Statistical Analysis
 Lecture 03

Books

PowerPoint

http://www.bu.edu.eg/staff/ahmedaboalatah14-courses/14767

Agenda

>Review "Lec 2"
$>$ t-Distribution
>F-Distribution

Sampling

Distributions and Data Descriptions

CHAPTER 8

Theorem 8.3:

If independent samples of size n_{1} and n_{2} are drawn at random from two populations, discrete or continuous, with means μ_{1} and μ_{2} and variances σ_{1}^{2} and σ_{2}^{2}, respectively, then the sampling distribution of the differences of means, $\bar{X}_{1}-\bar{X}_{2}$, is approximately normally distributed with mean and variance given by

$$
\mu_{\bar{X}_{1}-\bar{X}_{2}}=\mu_{1}-\mu_{2} \text { and } \sigma_{\bar{X}_{1}-\bar{X}_{2}}^{2}=\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}} .
$$

Hence,

$$
Z=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\left(\sigma_{1}^{2} / n_{1}\right)+\left(\sigma_{2}^{2} / n_{2}\right)}}
$$

is approximately a standard normal variable.

Ex 1:

The mean height of 15-year-old boys is 175 cm and the variance is 64 . For girls, the mean is 165 and the variance is 36 . If 25 boys and 25 girls were sampled,
what is the probability that the mean height of the sample of boys would be at least 6 cm higher than the mean height of the sample of girls?

Solution :

In this case, $\mu 1=175, \sigma 1=8, n 1=25$,
$\mu 2=165, \sigma 2=6, n 2=25$,
We need to calculate the probability $\mathrm{P}(\mathrm{X} 1-\mathrm{X} 2>=6)$.

$$
\sigma_{X_{A}-X_{B}}^{2}=\frac{\sigma_{A}^{2}}{n_{A}}+\frac{\sigma_{B}^{2}}{n_{B}}=
$$

$64 / 25+36 / 25=100 / 25=4$
Sqrt (4) $=2$
$\mathrm{P}(\mathrm{X} 1-\mathrm{X} 2>=6)=\mathrm{P}(\mathrm{Z}>=(6-(175-165)) / 2)=\mathrm{P}(\mathrm{Z}>=-4 / 2)=\mathrm{P}(\mathrm{Z}>=-2)$
$=1-\mathrm{P}(\mathrm{Z}<-2)=1-0.0228=0.9772$

Theorem 8.4:

If S^{2} is the variance of a random sample of size n taken from a normal population having the variance σ^{2}, then the statistic

$$
\chi^{2}=\frac{(n-1) S^{2}}{\sigma^{2}}=\sum_{i=1}^{n} \frac{\left(X_{i}-\bar{X}\right)^{2}}{\sigma^{2}}
$$

has a chi-squared distribution with $v=n-1$ degrees of freedom.

Ex 2:

It is believed that first-year salaries for newly qualified accountants follow a normal distribution with a variance of $\$ 2500$. A random sample of 16 observations was taken. Find the probability that the sample variance is less than $\$ 1500$.

Solution:

In this case, $\sigma^{2}=2500, n=16$,
We need to calculate the probability $\mathrm{P}\left(\mathrm{S}^{2}<1500\right)$.
$\chi^{2}=\frac{(n-1) S^{2}}{\sigma^{2}}=$
$(16-1) 1500 / 2500=15 * 1500 / 2500=9$
$\mathrm{P}\left(\mathrm{S}^{2}<1500\right)=\mathrm{P}\left(\chi^{2}<9\right)=$??
$\chi^{2}{ }_{\alpha}=9$ and with 15 degree of freedom has $\alpha=0.85=\mathrm{P}\left(\chi^{2}>=9\right)$
$\mathrm{P}\left(\mathrm{S}^{2}<1500\right)=\mathrm{P}\left(\chi^{2}<9\right)=1-\mathrm{P}\left(\chi^{2}>=9\right)=1-0.85=0.15$

t-Distribution

8.6 t-Distribution

Use of the Central Limit Theorem and the normal distribution is certainly helpful in this context.

However, it was assumed that the population standard deviation is known.

This assumption may not be unreasonable in situations where the engineer is quite familiar with the system or process.
in many experimental scenarios, knowledge of σ is certainly no more reasonable than knowledge of the population mean μ. Often, in fact, an estimate of σ must be supplied by the same sample information that produced the sample average \bar{x}.

8.6 t-Distribution

in many experimental scenarios, knowledge of σ is certainly no more reasonable than knowledge of the population mean μ. Often, in fact, an estimate of σ must be supplied by the same sample information that produced the sample average \bar{x}.

As a result, a natural statistic to consider to deal with inferences on μ is

$$
T=\frac{\bar{X}-\mu}{S / \sqrt{n}}
$$

since S is the sample analog to σ.

8.6 t-Distribution

In developing the sampling distribution of T, we shall assume that our random sample was selected from a normal population. We can then write

Multiply by σ / σ

$$
T=\frac{(\bar{X}-\mu) /(\sigma / \sqrt{n})}{\sqrt{S^{2} / \sigma^{2}}}=\frac{Z}{\sqrt{V /(n-1)}},
$$

where

$$
Z=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}
$$

has the standard normal distribution and

$$
V=\frac{(n-1) S^{2}}{\sigma^{2}}
$$

has a chi-squared distribution with $v=n-1$ degrees of freedom.

Corollary 8.1:

Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent random variables that are all normal with mean μ and standard deviation σ. Let

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \quad \text { and } \quad S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} .
$$

Then the random variable $T=\frac{\bar{X}-\mu}{S / \sqrt{n}}$ has a t-distribution with $v=n-1$ degrees of freedom.

What Does the t-Distribution Look Like?

The distribution of T is similar to the distribution of Z in that they both are symmetric about a mean of zero. Both distributions are bell shaped, but the t distribution is more variable, owing to the fact that the T-values depend on the fluctuations of two quantities, \bar{X} and S^{2}, whereas the Z-values depend only on the changes in \bar{X} from sample to sample. The distribution of T differs from that of Z in that the variance of T depends on the sample size n and is always greater than 1. Only when the sample size $n \rightarrow \infty$ will the two distributions become the same.

Figure 8.8: The t-distribution curves for $v=2,5$, and ∞.

Figure 8.9: Symmetry property (about 0) of the t-distribution.

Table A. 4 Critical Values of the t-Distribution

			$\boldsymbol{\alpha}$				
\boldsymbol{n}	$\mathbf{0 . 4 0}$	$\mathbf{0 . 3 0}$	$\mathbf{0 . 2 0}$	$\mathbf{0 . 1 5}$	$\mathbf{0 . 1 0}$	$\mathbf{0 . 0 5}$	$\mathbf{0 . 0 2 5}$
$\mathbf{1}$	0.325	0.727	1.376	1.963	3.078	6.314	12.706
$\mathbf{2}$	0.289	0.617	1.061	1.386	1.886	2.920	4.303
$\mathbf{3}$	0.277	0.584	0.978	1.250	1.638	2.353	3.182
$\mathbf{4}$	0.271	0.569	0.941	1.190	1.533	2.132	2.776
$\mathbf{5}$	0.267	0.559	0.920	1.156	1.476	2.015	2.571
$\mathbf{6}$	0.265	0.553	0.906	1.134	1.440	1.943	2.447
$\mathbf{7}$	0.263	0.549	0.896	1.119	1.415	1.895	2.365
$\mathbf{8}$	0.262	0.546	0.889	1.108	1.397	1.860	2.306
$\mathbf{9}$	0.261	0.543	0.883	1.100	1.383	1.833	2.262
$\mathbf{1 0}$	0.260	0.542	0.879	1.093	1.372	1.812	2.228
$\mathbf{1 1}$	0.260	0.540	0.876	1.088	1.363	1.796	2.201
$\mathbf{1 2}$	0.259	0.539	0.873	1.083	1.356	1.782	2.179
$\mathbf{1 3}$	0.259	0.538	0.870	1.079	1.350	1.771	2.160
$\mathbf{1 4}$	0.258	0.537	0.868	1.076	1.345	1.761	2.145
$\mathbf{1 5}$	0.258	0.536	0.866	1.074	1.341	1.753	2.131
$\mathbf{1 6}$	0.258	0.535	0.865	1.071	1.337	1.746	2.120
$\mathbf{1 7}$	0.257	0.534	0.863	1.069	1.333	1.740	2.110
$\mathbf{1 8}$	0.257	0.534	0.862	1.067	1.330	1.734	2.101
$\mathbf{1 9}$	0.257	0.533	0.861	1.066	1.328	1.729	2.093
$\mathbf{2 0}$	0.257	0.533	0.860	1.064	1.325	1.725	2.086
$\mathbf{2 1}$	0.257	0.532	0.859	1.063	1.323	1.721	2.080
$\mathbf{2 2}$	0.256	0.532	0.858	1.061	1.321	1.717	2.074
$\mathbf{2 3}$	0.256	0.532	0.858	1.060	1.319	1.714	2.069
$\mathbf{2 4}$	0.256	0.531	0.857	1.059	1.318	1.711	2.064
$\mathbf{2 5}$	0.256	0.531	0.856	1.058	1.316	1.708	2.060
$\mathbf{2 6}$	0.256	0.531	0.856	1.058	1.315	1.706	2.056
$\mathbf{2 7}$	0.256	0.531	0.855	1.057	1.314	1.703	2.052
$\mathbf{2 8}$	0.256	0.530	0.855	1.056	1.313	1.701	2.048
$\mathbf{2 9}$	0.256	0.530	0.854	1.055	1.311	1.699	2.045
$\mathbf{3 0}$	0.256	0.530	0.854	1.055	1.310	1.697	2.042
$\mathbf{4 0}$	0.255	0.529	0.851	1.050	1.303	1.684	2.021
$\mathbf{6 0}$	0.254	0.527	0.848	1.045	1.296	1.671	2.000
$\mathbf{1 2 0}$	0.254	0.526	0.845	1.041	1.289	1.658	1.980
$\mathbf{\infty}$	0.253	0.524	0.842	1.036	1.282	1.645	1.960

v	α						
	0.02	0.015	0.01	0.0075	0.005	0.0025	0.0005
1	15.894	21.205	31.821	42.433	63.656	127.321	636.578
2	4.849	5.643	6.965	8.073	9.925	14.089	31.600
3	3.482	3.896	4.541	5.047	5.841	7.453	12.924
4	2.999	3.298	3.747	4.088	4.604	5.598	8.610
5	2.757	3.003	3.365	3.634	4.032	4.773	6.869
6	2.612	2.829	3.143	3.372	3.707	4.317	5.959
7	2.517	2.715	2.998	3.203	3.499	4.029	5.408
8	2.449	2.634	2.896	3.085	3.355	3.833	5.041
9	2.398	2.574	2.821	2.998	3.250	3.690	4.781
10	2.359	2.527	2.764	2.932	3.169	3.581	4.587
11	2.328	2.491	2.718	2.879	3.106	3.497	4.437
12	2.303	2.461	2.681	2.836	3.055	3.428	4.318
13	2.282	2.436	2.650	2.801	3.012	3.372	4.221
14	2.264	2.415	2.624	2.771	2.977	3.326	4.140
15	2.249	2.397	2.602	2.746	2.947	3.286	4.073
16	2.235	2.382	2.583	2.724	2.921	3.252	4.015
17	2.224	2.368	2.567	2.706	2.898	3.222	3.965
18	2.214	2.356	2.552	2.689	2.878	3.197	3.922
19	2.205	2.346	2.539	2.674	2.861	3.174	3.883
20	2.197	2.336	2.528	2.661	2.845	3.153	3.850
21	2.189	2.328	2.518	2.649	2.831	3.135	3.819
22	2.183	2.320	2.508	2.639	2.819	3.119	3.792
23	2.177	2.313	2.500	2.629	2.807	3.104	3.768
24	2.172	2.307	2.492	2.620	2.797	3.091	3.745
25	2.167	2.301	2.485	2.612	2.787	3.078	3.725
26	2.162	2.296	2.479	2.605	2.779	3.067	3.707
27	2.158	2.291	2.473	2.598	2.771	3.057	3.689
28	2.154	2.286	2.467	2.592	2.763	3.047	3.674
29	2.150	2.282	2.462	2.586	2.756	3.038	3.660
30	2.147	2.278	2.457	2.581	2.750	3.030	3.646
40	2.123	2.250	2.423	2.542	2.704	2.971	3.551
60	2.099	2.223	2.390	2.504	2.660	2.915	3.460
120	2.076	2.196	2.358	2.468	2.617	2.860	3.373
∞	2.054	2.170	2.326	2.432	2.576	2.807	3.290

Example 8.8:

The t-value with $v=14$ degrees of freedom that leaves an area of 0.025 to the left, and therefore an area of 0.975 to the right, is

Example 8.8:

The t-value with $v=14$ degrees of freedom that leaves an area of 0.025 to the left, and therefore an area of 0.975 to the right, is

$$
t_{0.975}=-t_{0.025}=-2.145
$$

Example 8.9:

Find $P\left(-t_{0.025}<T<t_{0.05}\right)$.
Since $t_{0.05}$ leaves an area of 0.05 to the right, and $-t_{0.025}$ leaves an area of 0.025 to the left, we find a total area of

$$
1-0.05-0.025=0.925
$$

between $-t_{0.025}$ and $t_{0.05}$. Hence

$$
P\left(-t_{0.025}<T<t_{0.05}\right)=0.925 .
$$

Example 8.10:

Find k such that $P(k<T<-1.761)=0.045$ for a random sample of size 15 selected from a normal distribution and $\frac{\bar{X}-\mu}{s / \sqrt{n}}$.

Example 8.10:

Find k such that $P(k<T<-1.761)=0.045$ for a random sample of size 15 selected from a normal distribution and $\frac{\bar{X}-\mu}{s / \sqrt{n}}$.

From Table A. 4 we note that 1.761 corresponds to $t_{0.05}$ when $v=14$. Therefore, $-t_{0.05}=-1.761$. Since k in the original probability statement is to the left of $-t_{0.05}=-1.761$, let $k=-t_{\alpha}$. Then, from Figure 8.10, we have

$$
0.045=0.05-\alpha, \text { or } \alpha=0.005
$$

Hence, from Table A. 4 with $v=14$,

$$
k=-t_{0.005}=-2.977 \text { and } P(-2.977<T<-1.761)=0.045 .
$$

Example 8.11:

A chemical engineer claims that the population mean yield of a certain batch process is 500 grams per milliliter of raw material. To check this claim he samples 25 batches each month. If the computed t-value falls between $-t_{0.05}$ and $t_{0.05}$, he is satisfied with this claim. What conclusion should he draw from a sample that has a mean $\bar{x}=518$ grams per milliliter and a sample standard deviation $s=40$ grams? Assume the distribution of yields to be approximately normal.

Solution:

From Table A. 4 we find that $t_{0.05}=1.711$ for 24 degrees of freedom. Therefore, the engineer can be satisfied with his claim if a sample of 25 batches yields a t-value between -1.711 and 1.711 . If $\mu=500$, then

$$
t=\frac{518-500}{40 / \sqrt{25}}=2.25
$$

a value well above 1.711. The probability of obtaining a t-value, with $v=24$, equal to or greater than 2.25 is approximately 0.02 . If $\mu>500$, the value of t computed from the sample is more reasonable. Hence, the engineer is likely to conclude that the process produces a better product than he thought.

F-Distribution

F-Distribution

The statistic F is defined to be the ratio of two independent chi-squared random variables, each divided by its number of degrees of freedom. Hence, we can write

$$
F=\frac{U / v_{1}}{V / v_{2}}
$$

where U and V are independent random variables having chi-squared distributions with v_{1} and v_{2} degrees of freedom, respectively. We shall now state the sampling distribution of F.

Theorem 8.8:

If S_{1}^{2} and S_{2}^{2} are the variances of independent random samples of size n_{1} and n_{2} taken from normal populations with variances σ_{1}^{2} and σ_{2}^{2}, respectively, then

$$
F=\frac{S_{1}^{2} / \sigma_{1}^{2}}{S_{2}^{2} / \sigma_{2}^{2}}=\frac{\sigma_{2}^{2} S_{1}^{2}}{\sigma_{1}^{2} S_{2}^{2}}
$$

has an F-distribution with $v_{1}=n_{1}-1$ and $v_{2}=n_{2}-1$ degrees of freedom.

v_{2}	$f_{0.05}\left(v_{1}, v_{2}\right)$								
	v_{1}								
	1	2	3	4	5	6	7	8	9
1	161.45	199.50	215.71	224.58	230.16	233.99	236.77	238.88	240.54
2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38
3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81
4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59
16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54
17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49
18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46
19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42
20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39
21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.37
22	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34
23	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.32
24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30
25	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.28
26	4.23	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.27
27	4.21	3.35	2.96	2.73	2.57	2.46	2.37	2.31	2.25
28	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24
29	4.18	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.22
30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21
40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12
60	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04
120	3.92	3.07	2.68	2.45	2.29	2.18	2.09	2.02	1.96
∞	3.84	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1.88

Table A. 6 (continued) Critical Values of the F-Distribution

v_{2}	$f_{0.05}\left(v_{1}, v_{2}\right)$									
	v_{1}									
	10	12	15	20	24	30	40	60	120	∞
1	241.88	243.91	245.95	248.01	249.05	250.10	251.14	252.20	253.25	254.31
2	19.40	19.41	19.43	19.45	19.45	19.46	19.47	19.48	19.49	19.50
3	8.79	8.74	8.70	8.66	8.64	8.62	8.59	8.57	8.55	8.53
4	5.96	5.91	5.86	5.80	5.77	5.75	5.72	5.69	5.66	5.63
5	4.74	4.68	4.62	4.56	4.53	4.50	4.46	4.43	4.40	4.36
6	4.06	4.00	3.94	3.87	3.84	3.81	3.77	3.74	3.70	3.67
7	3.64	3.57	3.51	3.44	3.41	3.38	3.34	3.30	3.27	3.23
8	3.35	3.28	3.22	3.15	3.12	3.08	3.04	3.01	2.97	2.93
9	3.14	3.07	3.01	2.94	2.90	2.86	2.83	2.79	2.75	2.71
10	2.98	2.91	2.85	2.77	2.74	2.70	2.66	2.62	2.58	2.54
11	2.85	2.79	2.72	2.65	2.61	2.57	2.53	2.49	2.45	2.40
12	2.75	2.69	2.62	2.54	2.51	2.47	2.43	2.38	2.34	2.30
13	2.67	2.60	2.53	2.46	2.42	2.38	2.34	2.30	2.25	2.21
14	2.60	2.53	2.46	2.39	2.35	2.31	2.27	2.22	2.18	2.13
15	2.54	2.48	2.40	2.33	2.29	2.25	2.20	2.16	2.11	2.07
16	2.49	2.42	2.35	2.28	2.24	2.19	2.15	2.11	2.06	2.01
17	2.45	2.38	2.31	2.23	2.19	2.15	2.10	2.06	2.01	1.96
18	2.41	2.34	2.27	2.19	2.15	2.11	2.06	2.02	1.97	1.92
19	2.38	2.31	2.23	2.16	2.11	2.07	2.03	1.98	1.93	1.88
20	2.35	2.28	2.20	2.12	2.08	2.04	1.99	1.95	1.90	1.84
21	2.32	2.25	2.18	2.10	2.05	2.01	1.96	1.92	1.87	1.81
22	2.30	2.23	2.15	2.07	2.03	1.98	1.94	1.89	1.84	1.78
23	2.27	2.20	2.13	2.05	2.01	1.96	1.91	1.86	1.81	1.76
24	2.25	2.18	2.11	2.03	1.98	1.94	1.89	1.84	1.79	1.73
25	2.24	2.16	2.09	2.01	1.96	1.92	1.87	1.82	1.77	1.71
26	2.22	2.15	2.07	1.99	1.95	1.90	1.85	1.80	1.75	1.69
27	2.20	2.13	2.06	1.97	1.93	1.88	1.84	1.79	1.73	1.67
28	2.19	2.12	2.04	1.96	1.91	1.87	1.82	1.77	1.71	1.65
29	2.18	2.10	2.03	1.94	1.90	1.85	1.81	1.75	1.70	1.64
30	2.16	2.09	2.01	1.93	1.89	1.84	1.79	1.74	1.68	1.62
40	2.08	2.00	1.92	1.84	1.79	1.74	1.69	1.64	1.58	1.51
60	1.99	1.92	1.84	1.75	1.70	1.65	1.59	1.53	1.47	1.39
120	1.91	1.83	1.75	1.66	1.61	1.55	1.50	1.43	1.35	1.25
∞	1.83	1.75	1.67	1.57	1.52	1.46	1.39	1.32	1.22	1.00

v_{2}	$f_{0.01}\left(v_{1}, v_{2}\right)$								
	v_{1}								
	1	2	3	4	5	6	7	8	9
1	4052.18	4999.50	5403.35	5624.58	5763.65	5858.99	5928.36	5981.07	6022.47
2	98.50	99.00	99.17	99.25	99.30	99.33	99.36	99.37	99.39
3	34.12	30.82	29.46	28.71	28.24	27.91	27.67	27.49	27.35
4	21.20	18.00	16.69	15.98	15.52	15.21	14.98	14.80	14.66
5	16.26	13.27	12.06	11.39	10.97	10.67	10.46	10.29	10.16
6	13.75	10.92	9.78	9.15	8.75	8.47	8.26	8.10	7.98
7	12.25	9.55	8.45	7.85	7.46	7.19	6.99	6.84	6.72
8	11.26	8.65	7.59	7.01	6.63	6.37	6.18	6.03	5.91
9	10.56	8.02	6.99	6.42	6.06	5.80	5.61	5.47	5.35
10	10.04	7.56	6.55	5.99	5.64	5.39	5.20	5.06	4.94
11	9.65	7.21	6.22	5.67	5.32	5.07	4.89	4.74	4.63
12	9.33	6.93	5.95	5.41	5.06	4.82	4.64	4.50	4.39
13	9.07	6.70	5.74	5.21	4.86	4.62	4.44	4.30	4.19
14	8.86	6.51	5.56	5.04	4.69	4.46	4.28	4.14	4.03
15	8.68	6.36	5.42	4.89	4.56	4.32	4.14	4.00	3.89
16	8.53	6.23	5.29	4.77	4.44	4.20	4.03	3.89	3.78
17	8.40	6.11	5.18	4.67	4.34	4.10	3.93	3.79	3.68
18	8.29	6.01	5.09	4.58	4.25	4.01	3.84	3.71	3.60
19	8.18	5.93	5.01	4.50	4.17	3.94	3.77	3.63	3.52
20	8.10	5.85	4.94	4.43	4.10	3.87	3.70	3.56	3.46
21	8.02	5.78	4.87	4.37	4.04	3.81	3.64	3.51	3.40
22	7.95	5.72	4.82	4.31	3.99	3.76	3.59	3.45	3.35
23	7.88	5.66	4.76	4.26	3.94	3.71	3.54	3.41	3.30
24	7.82	5.61	4.72	4.22	3.90	3.67	3.50	3.36	3.26
25	7.77	5.57	4.68	4.18	3.85	3.63	3.46	3.32	3.22
26	7.72	5.53	4.64	4.14	3.82	3.59	3.42	3.29	3.18
27	7.68	5.49	4.60	4.11	3.78	3.56	3.39	3.26	3.15
28	7.64	5.45	4.57	4.07	3.75	3.53	3.36	3.23	3.12
29	7.60	5.42	4.54	4.04	3.73	3.50	3.33	3.20	3.09
30	7.56	5.39	4.51	4.02	3.70	3.47	3.30	3.17	3.07
40	7.31	5.18	4.31	3.83	3.51	3.29	3.12	2.99	2.89
60	7.08	4.98	4.13	3.65	3.34	3.12	2.95	2.82	2.72
120	6.85	4.79	3.95	3.48	3.17	2.96	2.79	2.66	2.56
∞	6.63	4.61	3.78	3.32	3.02	2.80	2.64	2.51	2.41

v_{2}	$f_{0.01}\left(v_{1}, v_{2}\right)$									
	v_{1}									
	10	12	15	20	24	30	40	60	120	∞
1	6055.85	6106.32	6157.28	6208.73	6234.63	6260.65	6286.78	6313.03	6339.39	6365.86
2	99.40	99.42	99.43	99.45	99.46	99.47	99.47	99.48	99.49	99.50
3	27.23	27.05	26.87	26.69	26.60	26.50	26.41	26.32	26.22	26.13
4	14.55	14.37	14.20	14.02	13.93	13.84	13.75	13.65	13.56	13.46
5	10.05	9.89	9.72	9.55	9.47	9.38	9.29	9.20	9.11	9.02
6	7.87	7.72	7.56	7.40	7.31	7.23	7.14	7.06	6.97	6.88
7	6.62	6.47	6.31	6.16	6.07	5.99	5.91	5.82	5.74	5.65
8	5.81	5.67	5.52	5.36	5.28	5.20	5.12	5.03	4.95	4.86
9	5.26	5.11	4.96	4.81	4.73	4.65	4.57	4.48	4.40	4.31
10	4.85	4.71	4.56	4.41	4.33	4.25	4.17	4.08	4.00	3.91
11	4.54	4.40	4.25	4.10	4.02	3.94	3.86	3.78	3.69	3.60
12	4.30	4.16	4.01	3.86	3.78	3.70	3.62	3.54	3.45	3.36
13	4.10	3.96	3.82	3.66	3.59	3.51	3.43	3.34	3.25	3.17
14	3.94	3.80	3.66	3.51	3.43	3.35	3.27	3.18	3.09	3.00
15	3.80	3.67	3.52	3.37	3.29	3.21	3.13	3.05	2.96	2.87
16	3.69	3.55	3.41	3.26	3.18	3.10	3.02	2.93	2.84	2.75
17	3.59	3.46	3.31	3.16	3.08	3.00	2.92	2.83	2.75	2.65
18	3.51	3.37	3.23	3.08	3.00	2.92	2.84	2.75	2.66	2.57
19	3.43	3.30	3.15	3.00	2.92	2.84	2.76	2.67	2.58	2.49
20	3.37	3.23	3.09	2.94	2.86	2.78	2.69	2.61	2.52	2.42
21	3.31	3.17	3.03	2.88	2.80	2.72	2.64	2.55	2.46	2.36
22	3.26	3.12	2.98	2.83	2.75	2.67	2.58	2.50	2.40	2.31
23	3.21	3.07	2.93	2.78	2.70	2.62	2.54	2.45	2.35	2.26
24	3.17	3.03	2.89	2.74	2.66	2.58	2.49	2.40	2.31	2.21
25	3.13	2.99	2.85	2.70	2.62	2.54	2.45	2.36	2.27	2.17
26	3.09	2.96	2.81	2.66	2.58	2.50	2.42	2.33	2.23	2.13
27	3.06	2.93	2.78	2.63	2.55	2.47	2.38	2.29	2.20	2.10
28	3.03	2.90	2.75	2.60	2.52	2.44	2.35	2.26	2.17	2.06
29	3.00	2.87	2.73	2.57	2.49	2.41	2.33	2.23	2.14	2.03
30	2.98	2.84	2.70	2.55	2.47	2.39	2.30	2.21	2.11	2.01
40	2.80	2.66	2.52	2.37	2.29	2.20	2.11	2.02	1.92	1.80
60	2.63	2.50	2.35	2.20	2.12	2.03	1.94	1.84	1.73	1.60
120	2.47	2.34	2.19	2.03	1.95	1.86	1.76	1.66	1.53	1.38
∞	2.32	2.18	2.04	1.88	1.79	1.70	1.59	1.47	1.32	1.00

Theorem 8.7:

Writing $f_{\alpha}\left(v_{1}, v_{2}\right)$ for f_{α} with v_{1} and v_{2} degrees of freedom, we obtain

$$
f_{1-\alpha}\left(v_{1}, v_{2}\right)=\frac{1}{f_{\alpha}\left(v_{2}, v_{1}\right)} .
$$

Thus, the f-value with 6 and 10 degrees of freedom, leaving an area of 0.95 to the right, is

$$
f_{0.95}(6,10)=\frac{1}{f_{0.05}(10,6)}=\frac{1}{4.06}=0.246
$$

